Seja Bem Vindo ao Portal Da Educação: Equações algébricas e notação

segunda-feira, 7 de maio de 2012

Equações algébricas e notação

A fase antiga (elementar), que abrange o período de 1700 a.C. a 1700 d.C., aproximadamente, caracterizou-se pela invenção gradual do simbolismo e pela resolução de equações (em geral coeficientes numéricos) por vários métodos, apresentando progressos pouco importantes até a resolução "geral" das equações cúbicas e quânticas e o inspirado tratamento das equações polinomiais em geral feito por François Viète, também conhecido por Vieta (1540-1603).

O desenvolvimento da notação algébrica evoluiu ao longo de três estágios: o retórico (ou verbal), o sincopado (no qual eram usadas abreviações de palavras) e osimbólico. No último estágio, a notação passou por várias modificações e mudanças, até tornar-se razoavelmente estável ao tempo de Isaac Newton. É interessante notar que, mesmo hoje, não há total uniformidade no uso de símbolos. Por exemplo, os americanos escrevem "3.1416" como aproximação de Pi, e muitos europeus escrevem "3,1416". Em alguns países europeus, o símbolo "÷" significa "menos". Como a álgebra provavelmente se originou na Babilônia, parece apropriado ilustrar o estilo retórico com um exemplo daquela região. O problema seguinte mostra o relativo grau de sofisticação da álgebra babilônica. É um exemplo típico de problemas encontrados em escrita cuneiforme, em tábuas de argila que remontam ao tempo do rei Hammurabi. A explanação, naturalmente, é feita em português; e usa-se a notação decimal indo-arábica em vez da notação sexagesimal cuneiforme. A coluna à direita fornece as passagens correspondentes em notação moderna. Eis o exemplo:

[1] Comprimento, largura. Multipliquei comprimento por largura, obtendo assim a área: 252. Somei comprimento e largura: 32. Pede-se: comprimento e largura.


[2] [Dado] 32 soma; 252 área.
x+y=k
xy=P     } ... (A)
[3] [Resposta] 18 comprimento; 14 largura.

[4] Segue-se este método: Tome metade de 32 [que é 16].
k/2
16 x 16 = 256
(k/2)2
256 - 252 = 4
(k/2)2 - P = t2    } ... (B)
A raiz quadrada de 4 é 2.
16 + 2 = 18 comprimento.
(k/2) + t = x.
16 - 2 = 14 largura
(k/2) - t = y.
[5] [Prova] Multipliquei 18 comprimento por 14 largura.
18 x 14 = 252 área
((k/2)+t) ((k/2)-t)
= (k2/4) - t2 = P = xy.



Nota-se que na etapa [1] o problema é formulado, na [2] os dados são apresentados, na [3] a resposta é dada, na [4] o método de solução é explicado com números e, finalmente, na [5] a resposta é testada. A "receita" acima é usada repetidamente em problemas semelhantes. Ela tem significado histórico e interesse atual por várias razões.

Antes de tudo não é a maneira como resolveríamos hoje o sistema (A). O procedimento padrão nos atuais textos escolares de álgebra é resolver, digamos, a primeira equação para y (em termos de x), substituir na segunda equação e, então, resolver a equação quadrática resultante em x; isto é, usaríamos o método de substituição. Os babilônios também sabiam resolver sistemas por substituição, mas frequentemente preferiam usar seu método paramétrico. Ou seja, usando-se notação moderna, eles concebiam x e y em termos de uma nova incógnita (ou parâmetro) fazendo x=(k/2)+t e y=(k/2)-t.
  
Então o produto

xy =  ((k/2) + t) ((k/2) - t)  =  (k/2)2 - t2   =  P

levava-os à relação (B):

(k/2)2 - P =  t2

Em segundo lugar, o problema acima tem significado histórico porque a álgebra grega (geométrica) dos pitagóricos e de Euclides seguia o mesmo método de solução - traduzida, entretanto, em termos de segmentos de retas e áreas e ilustrada por figuras geométricas. Alguns séculos depois, outro grego, Diofanto, também usou a abordagem paramétrica em seu trabalho com equações "diofantinas". Ele deu início ao simbolismo moderno introduzindo abreviações de palavras e evitando o estilo um tanto intrincado da álgebra geométrica.
Em terceiro lugar, os matemáticos árabes (inclusive al-Khowarizmi) não usavam o método empregado no problema acima; preferiam eliminar uma das incógnitas por substituição e expressar tudo em termos de palavras e números.
Antes de deixar a álgebra babilônica, notemos que eles eram capazes de resolver uma variedade surpreendente de equações, inclusive certos tipos especiais de cúbicas e quânticas - todas com coeficientes numéricos, naturalmente.

Marcadores:

0 Comentários:

Postar um comentário

Assinar Postar comentários [Atom]

<< Página inicial